Intel DG45ID

Nothing conjures up more fright in the labs than watching the fire control system go off with a dozen systems running or having to spend more time testing the Intel DG45ID. All right, it is not quite that bad but let’s just say during our initial conversations with Intel we suggested the board might be better suited as a poolside serving tray than a mainstay component in our HTPC.


We directed most of our anger to a very poor pre-release BIOS and a driver set that honestly had us feeling as if it was 1999 again. To be quite frank, the drivers have been one of our largest sources of frustration and they affect the performance of the other G45 boards. However, the hardware was not exactly retail ready when released either. So three BIOS and four driver releases later, we find ourselves with a board that still does not inspire us with confidence like the other offerings.

But then again, we no longer feel like someone is running a cheese grater across our feet. In fact, dare we say after our initial agony, we could probably live with this board as a central part of our home theater system or would feel safe enough in turning it loose in a SOHO setup for friends or family when combined with the right component choices. Those last seven words are very important as this board has anger issues with a wide variety of components in our test labs.

Like most Intel branded motherboards, the feature set covers all the bases while the BIOS options are limited. The DG45ID features Intel’s excellent 82567LF PCIe Gigabit Ethernet controller, Firewire 400 support from the LSI 3227, RAID 0,1,5,10 from the ICH10R, IR capabilities, and HD audio from the IDT 92HD73E featuring Dolby Home Theater certification. Designed to satisfy just about any HTPC or SOHO user, at least from a feature viewpoint, this board is the value leader in our comparison group.

This is a well laid out board for the most part. The board features a three-phase power delivery system that worked well with our test processors that included the dual-core E5200 up to the quad-core Q9300. Intel designed this board to be legacy free as it does not include IDE, floppy, parallel, or PS/2 ports. A move that some of us think is finally due. There are five SATA ports located on the board and an eSATA port on the IO panel that also contains six USB 2.0, an IEEE 1394a port, LAN port, and the HDMI/DVI output ports. We are not crazy about the placement of the 4-pin ATX power connector, but otherwise this board has a simple but refined layout.

Actual operation of the board revealed a few surprises. The BIOS offers very few selections for tuning the board. Up until BIOS 079 memory voltages were not available but a limited amount of memory timings were selectable. We tried a wide variety of DDR2-800 modules that are rated at CAS4 operation with 1.8V. Settings at CAS4 usually resulted in a non-POST situation or a very instable system. Intel informed us that they only officially support CAS5 or higher timings at 1.80V and that is the reason why we could not get stability with CAS4 timings at DDR2-800. One has to wonder why Intel included the settings if they would not be supported in the first BIOS releases. BIOS 079 has removed CAS 3 and 4 settings with defaults now to CAS5 or greater depending on the memory module SPD.

In a twist of fate, after removing the lower CAS ratings they included memory voltage settings up to 2.12V. Would the right hand please meet left hand. Our personal belief is that if we had these voltage options in the first place that CAS4 operation would not be a problem as the ASUS and Gigabyte boards work perfectly with the same modules at DDR2-800 with CAS4 timings at BIOS settings of 1.80V~1.85V. Gigabyte and ASUS both overvolt DRAM to around 1.83V with the BIOS set at 1.80V on our samples. So the ability to run at 1.92V+ on the Intel board under BIOS 079 should have allowed CAS4 operation to be possible.

The other strange behavior occurred with the automatic fan control system. Intel provides Processor Zone Response (PZR) with three different settings, aggressive, normal, or slow, and Processor Zone Damping (PZD) that can be set to Normal or High. PZR determines at which temperature zone the fan will start to ramp up to speed, the aggressive setting should ramp the fan or fans slightly above normal operating temperatures while the slow settings should ramp near the thermal limit of the processor. PZD determines how aggressively the fans react to the thermal trigger when reaching a particular temperature zone set in PZR.

The actual temperature zones in PZR and ramp speeds in PZD are not listed in the documentation. In our testing, the PZR zones were all activated when the CPU temperature increased about 9C~11C over the standard operating value. In fact, this trigger required us to remove power to the CPU fan on the E5200/E7200 processors to reach the first thermal target (PZR at aggressive, PZD at High) while loading both cores with Nero Recode. Otherwise, the CPU and System fans ran near 100% anyway with the chassis fans modulating at times as the CPU temperature reached the first thermal gate. The modulation of the two chassis fans was annoying at times as they would spin up suddenly and then drop down just enough for an audible difference before spinning back up again. It seemed to us that the chassis fan control was more sensitive to thermal changes than the CPU heatsink/fan control.

Our other concerns centered on S3 resume activities, SATA optical drive support, and an annoying whine from the board when running our Q9300 or 8GB of memory. The S3 problem was not always repeatable so it is difficult to determine whether it is BIOS, OS, or related to both. We prefer to think BIOS as our other boards did not exhibit the same problem. We have our system set to go to sleep in one hour (monitor turns off in 30 minutes) with Wake on LAN turned off and the balance of power settings at default. The system will power down normally with only the USB ports active and our case power indicator LED lit properly. Moving the mouse or press the spacebar on the keyboard will bring the system out of sleep normally. This is usually how it worked.

However, at various times after the system has gone to sleep it will wake back up without intervention for a few seconds and then shuts down. Sometimes this a few minutes after entering sleep mode, other times it occurred an hour or so later. The board requires a full power cycle to come back to life and does not always resume to Vista, instead we receive the error that Vista has been incurred an error after entering the OS. One other S3 problem we have noticed on this board is that upon successful resume (it does happen at times) that our HDMI audio output is limited to 2-channel operation. A quick reboot and multi-channel options magically reappear.

Our second concern is the system will whine at us while under heavy load. Normally this behavior is due to one of the PWM chokes under stress for a variety of reasons from tolerances being exceeded during overclocking to defective components. However, it appears on our retail board that it is the L53 inductor between the memory slots and the 24-pin ATX power connector. Pressing down on it will usually eliminate the whine or changing out the CPU to something like the E5200 or decreasing memory from 8GB to 4GB will do it. This indicates to us a component problem based on previous experience, it is not something that affects the performance of the board but requires earplugs at various times. Our first review sample did not have this problem. However, we have received emails about this problem from other owners. Hopefully we will have an update at the end of this article series.

Our last problem stems from the fact that this board does not like certain SATA optical drives like the Sony BDU-X10S or LITE-ON DH-401S-08 BD drives. Each drive required a firmware update; the board required the latest BIOS update, and then a game of hunt and seek for a working port attachment. We did not have this problem on the other G45 boards, but have seen it at various times on other chipsets. On this board, there could be a conflict between these particular drives and the BIOS or a PnP enumeration problem in the order sequence of the drives when they are detected during the BIOS POST process.

We solved the problem by changing the port attachment for our drives along with the firmware updates when running under AHCI or RAID mode. We discovered that certain Sony and LITE-ON drives just would not work properly regardless of the firmware/BIOS updates and port location with the board in Native IDE mode. We experienced everything from non-POST conditions, to slow recognition of the drive, and finally slow operation of the drive under Vista that usually resulted in a game or movie locking up. It appears other users are having problems, especially those who are not running their system in AHCI or RAID mode.

Pros/Cons

Our initial opinion of this board was not kind, neither to other staff members nor to the people at Intel responsible for the product. Of course, poor driver support clouded our first judgment of the product but as the drivers improved, we still incurred a few problems. Intel solved several problems we had early on with BIOS updates. We will be the first ones to admit that Intel has some of the best hardware support in the Industry with active products. It sometimes takes too long to address problems but eventually they come through in the majority of instances. This is a product that we are pulling for them to come through in a hurry.

That said, this is not a bad board for use as an HTPC or SOHO machine and the price is right compared to the other offerings. We liked the layout, stock performance is within a whisker of the other boards, and the lack of legacy ports is refreshing to most of us although a couple of our favorite wireless keyboard/mouse combinations still require PS/2 ports. But that just gives us a valid reason to update our input devices. The automatic fan control system is useless to us but with the right CPU and chassis fans, we can live with it if required. The S3 resume and inductor problems are more troubling as they are not consistent. We are still investigating both problems but it appears we are in the minority when conversing with other owners of the DG45ID.

If we were to change one item on the board, it would be the ability to manipulate CPU voltages. The ability to slightly undervolt/overvolt CPUs is important to a cross-section of consumers that would be in the market for this board. Actually, this is a tough call to make as having a decent fan control system is also right there at the top for us. We are glad that Intel listened to our requests about allowing memory voltage changes on this board. This board, like others from Intel is highly sensitive to proper SPD settings on memory modules for both timing and voltage instructions. The ability to increase memory voltages ensured a greater range of memory compatibility and allowed 8GB operation at DDR2-800 as previously we had to test at DDR2-667. Now if they would just allow stable CAS4 operation and this board would provide stock peformance equal to our other DDR2 equipped boards.

Currently the most important item for us remains with driver compatibility. However, from a hardware viewpoint, processor voltage changes would be nice and while we are at it, a decent fan control system, and greater hardware compatibility (just had to sneak those in one last time). Overall, a few quirks or ghost in the machine problems aside, this is still a board that should be considered if you are on a budget and follow the QVL guidelines for memory and other components. We expect the board to improve as Intel continues to make BIOS and driver improvements and as such, we will recommend it for that reason.

Gallery: Intel G45

The Boards: SuperMicro C2SEA The World's First mini-ITX G45 Board
Comments Locked

53 Comments

View All Comments

  • sprockkets - Wednesday, September 24, 2008 - link

    Except the fact that you needed a firmware update on the home theater receiver is just bulls****.

    Thanks DRM!

    I can't wait till VLC gets native blue ray support! At least we have Sly-Soft!
  • DoucheVader - Friday, September 26, 2008 - link

    Hey if it wasn't for a vast majority of people copying stuff, we wouldn't have DRM. I am sick of the complaints. We as consumers created this problem.

    Most things that have DRM are to protect someone's bread and butter. How would you like it if every time you got paid there was some money missing?


  • - Saturday, September 27, 2008 - link

    Your point might be valid if DRM worked, but can you point out a single mainstream home theater medium on which the DRM means anything to the pirates?

    DRMed CDs? Ha. Those just pissed off consumers when they inevitable didn't play in some players and/or contained bad software. Often defeated with the frickin shift key.

    DVD? People have tattoos of the DeCSS source code it's that damn short. Amusingly the longest lasting DRM scheme, with 2.5 years between the first DVD movie release and the release of DeCSS.

    HD-DVD? 253 days, not even a full year after the format first shipped its AACS protection system was cracked. Under three weeks later the first copies start showing up on private trackers.

    Blu-Ray (AACS)? The same AACS crack applied to it, and about two weeks after the first HD-DVD copies showed up Blu-Ray was right behind it. Launch to first pirated movie: 225 days.

    Blu-Ray (BD+)? Slightly harder than AACS apparently, but titles did not ship with it until October 2007 so the cracking community got off to a late start. AnyDVD HD supported decrypting all BD+ titles roughly 5 months after the first titles shipped and copies again showed up soon after.

    I'm less familiar with DVD-Audio and SACD, but my understanding is that there hasn't been a direct "crack" of their respective encryption but instead PC-based players and/or sound drivers are modified to just write the decoded bitstream to the hard drive. This works quite well for audio, as in most cases the compression (if any) applied on the disc is not wanted and the uncompressed PCM stream is exactly what the user desires. For obvious reasons that is not feasible with video.

    Once these protections are broken, they do nothing to reduce piracy and only remain to prevent fair-use backups by technologically illiterate users and/or to annoy consumers with crap like these HDCP issues.

    It doesn't even matter to the pirate crowd whether the cracks are public or private, as long as someone can do it that means the files will get out, and once they're out they're out.

Log in

Don't have an account? Sign up now